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A description of spin Faraday rotation, Kerr rotation and ellipticity signals for single- and multilayer en-
sembles of singly charged quantum dots �QDs� is developed. The microscopic theory considers both the single
pump-pulse excitation and the effect of a train of such pulses, which in the case of long resident-electron spin
coherence time leads to a stationary distribution of the electron spin polarization. The calculations performed
for single-color and two-color pump-probe setups show that the three experimental techniques: Faraday rota-
tion, Kerr rotation, and ellipticity measurements provide complementary information about an inhomogeneous
ensemble of QDs. The microscopic theory developed for a three-dimensional ensemble of QDs is shown to
agree with the phenomenological description of these effects. The typical time-dependent traces of pump-probe
Faraday rotation, Kerr rotation and ellipticity signals are calculated for various experimental conditions.

DOI: 10.1103/PhysRevB.80.104436 PACS number�s�: 78.67.Hc, 78.47.�p, 71.35.�y

I. INTRODUCTION

It is impossible to overestimate the role, which pump-
probe spin Faraday and Kerr rotation measurements have
played and continue to play in developing of spintronics, a
new area of science and technology that tries to utilize an
electron spin, in addition to its charge, in various semicon-
ductor devices.1,2 The discovery of a very long spin coher-
ence time in bulk GaAs �Ref. 3� and II-VI compound quan-
tum wells4 using these highly sensitive techniques was one
of the cornerstones for the initiation of spintronics, and today
pump-probe spin-dependent spectroscopy has become a
common way to study carrier spin coherence in bulk
crystals,5,6 quantum wells �QWs� �Refs. 7 and 8� and quan-
tum dot �QD� samples.9–13 At the same time Kerr rotation
measurements have become the most visual and impressive
method to study electron spin transport,14,15 spin accumula-
tion and injection,16,17 and the spin-Hall effect.18,19

The schematic illustration of the pump-probe measure-
ment techniques is shown in Fig. 1. A first short intense pulse
of circularly polarized light �a pump pulse� generates the
nonequilibrium spin-oriented electrons and holes and creates
a macroscopic spin polarization.20 In a constant transverse
magnetic field, B, applied to the sample the macroscopic
polarization starts to precess around the field direction. On
the microscopic single-spin level, the precession is con-
nected with a coherent superposition of two spin levels split
by the magnetic field. The superposition is created by a short
pulse of circularly polarized light and the quantum mechani-
cal beating of this coherent superposition occurs at the Lar-
mor precession frequency of the applied magnetic field, �L
=ge�BB /�, where ge is the electron g factor, and �B is the
Bohr magneton. The optically created polarization and its
precession can be probed by short pulses of linearly polar-
ized light via rotation of their polarization plane after the
propagation through the photoexcited medium �Faraday ef-

fect� or reflection from this medium �Kerr effect�. The short
probe pulses of linearly polarized light show a remarkable
sensitivity to the practically instant population of electron
and hole spin sublevels. The pump-probe techniques allow
one to study spin dynamics of resident carriers that are also
polarized by the pump pulse during their coherence time,
which exceeds the typical photoluminescence decay time by
several orders of magnitude. These advantages make the
pump-probe Faraday and Kerr rotation techniques suggested
more than 15 years ago21–24 to be a powerful tool to study the
carrier spin dynamics.

The pump-probe spin-dependent rotation techniques are
especially useful for manipulation and measurement on elec-
tron spin polarization in singly charged QDs due to a very
long coherence time of resident-electron spins. This time in
QDs could be as long as several microseconds11,25 and it
exceeds the spin coherence time measured in bulk GaAs
�Refs. 3 and 26� by two orders of magnitude. The resonant
short pulse excitation of such QDs by circularly polarized
light leads to practically deterministic creation of an electron

FIG. 1. �Color online� Schematic illustration of �a� the pump-
probe Faraday and Kerr rotation measurement techniques and �b� a
coherent superposition created by a short pulse of �+ polarized light
from the two spin states split in a transverse magnetic field, B. �F

and �K are the Faraday and Kerr rotation angles, respectively.
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spin polarization.13 A train of such pump pulses results in
complete synchronization of electron spins if their precession
frequency satisfies the phase synchronization condition
�PSC�, which is fulfilled when the train repetition period be-
ing shorter than the single electron spin coherence time is
equal to an integer number of the Larmor precession
periods.27 This synchronization leads to the mode locking of
electron spin coherence in an ensemble of QDs,11 the effect
which allows one to overcome the dephasing of electron spin
polarization connected with a dispersion of precession fre-
quencies and to control the ensemble polarization during a
single electron spin coherence time. The mode-locking effect
in self-organized �In,Ga�As/GaAs QDs is enhanced by the
nuclear-induced frequency focusing effect, which shifts the
electron spin precession frequencies of the entire ensemble
of QDs to the modes satisfying the PSC.28 This last phenom-
enon opens exciting opportunities to create an entire en-
semble of QDs with more than one million spins having a
single precession frequency29 and their controlled manipula-
tion by short pulses of various polarizations.30,31

Despite the tremendous success of the pump-probe Fara-
day and Kerr rotation measurement techniques, their micro-
scopic theoretical descriptions for QD structures are absent
to the best of our knowledge. For bulk semiconductors and
QWs the theory of magneto-optical photoinduced Faraday
effect was developed, respectively, by Aronov and
Ivchenko32 and by the authors of Refs. 7, 33, and 34. In the
present paper we develop such a theory for the array of QDs
considered as an ensemble of independent localized oscillat-
ing dipoles. This approximation, which generally imposes a
restriction on the QD concentration, is usually sufficiently
accurate in self-organized QD samples like those studied,
e.g., in Ref. 13.

In the standard pump-probe Faraday rotation experiments,
the transmitted probe light is split into two linearly polarized
beams with orthogonal polarizations oriented at �45° angles
relative to the initial light polarization �or the polarization of
the probe light transmitted through the unpumped sample�.
Then the difference of the time-integrated intensities of the
split beams is measured as a function of the delay between
pump and probe pulses.35 To describe the experimental setup
we introduce two pairs of axes, x ,y and x� ,y�, rotated by a
45° angle with respect to each other. The initial polarization
of the probe light is along x axis. This allows us to define the
experimentally measured spin Faraday signal, F, as

F = lim
z→+�

�
0

Texp

��Ex�
�t��z,t��2 − �Ey�

�t��z,t��2�dt , �1�

where Ex�
�t��z , t� and Ey�

�t��z , t� are, respectively, the x� and y�
components of an electric field of the transmitted probe light
at time t. They are connected with the x and y components of
the electric field: Ex�= �Ex−Ey� /�2 and Ey�= �Ex+Ey� /�2.
Equation �1� assumes the probe light source to be positioned
at z→−�.

In this form Eq. �1� is derived for the case where the
sample is subject to a periodic train of pump and probe
pulses repeated with a certain period TR. The integration in
Eq. �1� takes place over the measurement time, Texp, which

exceeds by far all other time constants in the experiment,
such as spin precession and relaxation times and pulse rep-
etition period. For the case of a single pump and single probe
pulse the integration in Eq. �1� is effectively carried out dur-
ing the probe-pulse duration, 	p.

The Kerr effect is measured in the reflection geometry and
its magnitude is defined as

K = lim
z→−�

�
0

Texp

��Ex�
�r��z,t��2 − �Ey�

�r��z,t��2�dt , �2�

where Ex�
�r��z , t� and Ey�

�r��z , t� are, respectively, the x� and y�
components of the reflected probe-pulse electric field. The
probe-pulse rotation angles in the Faraday and Kerr rotation
measurements can approximately be expressed in a simple
form36

�F � F/2I, �K � K/2I , �3�

if ��F,K�
1. Here I is the total time-integrated intensity of
the transmitted or reflected probe pulse, respectively.

The pump-probe ellipticity measurement is another way
to study spin dynamics in samples photoexcited by the po-
larized pump pulse.37 The experimental setup in this case is
similar to setup used for the Faraday rotation measurements
but with 1/4 wave plate. The ellipticity signal in transmission
is defined by the following integrated difference

E = lim
z→+�

�
0

Texp

��E�−
�t� �z,t��2 − �E�+

�t� �z,t��2�dt , �4�

where E��
�t� = �Ex

�t�� iEy
�t�� /�2 are the circular �+ and �− com-

ponents of the transmitted probe pulse. For small ellipticity
values, the so-called angle of ellipticity, �, is given by

� � E/2I . �5�

In this paper we calculate microscopically the magnitudes
of the single- and two-color pump-probe Faraday and Kerr
rotation signals, F and K, and the ellipticity signal E in an
ensemble of singly charged QDs resonantly excited by a
single short light pulse of an arbitrary shape or an infinite
train of such pulses. The calculations show that the three
measurement techniques explore spin polarization properties
of different subsets of QDs due to inhomogeneous broaden-
ing of the resonant transition energies in the QD ensemble,
and the results of these measurements may be nonidentical.
As a result, the time-dependent traces measured by these
three techniques significantly differ from each other and are
very sensitive functions of the pump and probe excitation
frequencies, their detuning, and the dependence of the elec-
tron g factor and the oscillator transition strength on the trion
excitation frequencies. The traces of the Kerr rotation signal
depend also on the thickness of the cap layer. The average
electron spin precession frequencies measured in these ex-
periments can differ as well.

Our paper is organized as follows. In Sec. II we provide a
theoretical description of electron spin polarization created in
an ensemble of QDs by a single short pulse of circularly
polarized light or by an infinite train of such pulses. The
general microscopic theory of probing this spin polarization
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in the QD ensemble is presented in Sec. III. For a three-
dimensional ensemble of QDs we compare the developed
approach with the standard phenomenological description of
magneto-optical pump-probe effects within the effective-
medium approximation. In the final Sec. IV we calculate
typical time-dependent traces of the two color pump-probe
Faraday and Kerr rotation and the ellipticity signals and
briefly compare the obtained results with available experi-
mental data.

II. CREATION OF ELECTRON SPIN POLARIZATION
IN SINGLY CHARGED QUANTUM DOTS

In what follows we consider a planar array of singly
charged zinc blende based QDs grown along the axis
z 	 �001�. The QDs are self-organized during molecular-beam
epitaxy growth on the wetting layer. The lateral size remark-
ably exceeds their height, which serves a quantization axis
for the electron �1 /2 spin states and heavy-hole �3 /2 spin
states responsible for the dominating optical transitions. In
the absence of a magnetic field, the ground state of a singly
charged QD is twofold spin degenerate. The first excited
state of such a QD under interband transitions is a singlet
trion, which consists of two electrons occupying the same
size-quantized level with opposite spins and a heavy hole in
one of the two degenerate states: �3 /2. The optical selection
rules for the resonant excitation of these trion states and their
radiative decay are very restrictive. The +3 /2 trion states can
be created only by the �+ circularly polarized light and only
in a QD where the resident electron has the spin projection
+1 /2. These +3 /2 trion states can radiatively decay only into
the initial +1 /2 spin states. At the same time �+ circularly
polarized light does not affect an electron with the spin pro-
jection −1 /2. The same rules with the sign reversal “+” ↔
“−” are applied for the optical excitation of the −3 /2 trion
state. It is important to notice that the singlet trion in these
QDs does not have an optical transition dipole component
along the z axis.

A. Pumping of electron spins in quantum dots

Let us first consider the effect of QD photoexcitation by a
short electromagnetic pulse with the carrier frequency P
close to the trion resonant frequency 0. We also assume that
the pulse duration time 	p is short as compared with other
times: the spin relaxation times of a resident electron and a
photohole forming the trion; the trion radiative lifetime; and
the spin precession period of an electron and a heavy hole in
an external magnetic field. According to the selection rules
the interaction of the QD with the electromagnetic wave is
described by the Hamiltonian

V̂�t� = −� �d̂+�r�E�+�r,t� + d̂−�r�E�−�r,t��d3r , �6�

where d̂��r�= �d̂x�r�� id̂y�r�� /�2 are the circularly polarized
components of the dipole moment density operator, and
E���r , t� are the circularly polarized components of the elec-
tric field of a quasimonochromatic electromagnetic wave.
The electric field of this wave is defined as

E�r,t� = E�+�r,t�o+ + E�−�r,t�o− + c.c., �7�

where o� are the circularly polarized unit vectors related to
the unit vectors ox 	x and oy 	 y by o�= �ox� ioy� /�2. Here
the both components E�+ and E�− are proportional to the
exponential function e−iPt.

The incident electromagnetic field induces optical transi-
tions between the electron state and the trion state creating a
coherent superposition of them. In accordance with the se-
lection rules the �+ circularly polarized light creates a super-
position of the +1 /2 electron and +3 /2 trion states while the
�− polarized light creates a superposition of the −1 /2 elec-
tron and −3 /2 trion states. In order to describe these super-
positions it is convenient to introduce a four component
wave function

� = ��1/2,�−1/2,�3/2,�−3/2� , �8�

where the �1 /2 subscripts denote the electron spin projec-
tion and �3 /2 refer to the spin projection of a hole in the
trion. The electron spin polarization is expressed in terms of
��1/2 as follows:

Sz = ���1/2�2 − ��−1/2�2�/2,

Sx = Re��1/2�−1/2
� �, Sy = − Im��1/2�−1/2

� � . �9�

Hereafter we completely neglect all other excited states of a
QD, e.g., triplet trion states, and treat the QD optical excita-
tion within the four-level model. Then in the rotating-wave
approximation the action of a short pulse on the charged QD
can be described by the following equations:

i��̇3/2 = �0�3/2 + V+�t��1/2,

i��̇1/2 = V+
��t��3/2, �10�

i��̇−3/2 = �0�−3/2 + V−�t��−1/2,

i��̇−1/2 = V−
��t��−3/2. �11�

Here �̇
�� /�t and the time-dependent matrix elements
V��t�=−�d�r�E���r , t�d3r describe the light interaction with
a QD. The strength of this interaction is characterized by the
effective transition dipole38

d�r� = �1/2�d̂−�r��3/2 = �− 1/2�d̂+�r��− 3/2 = − i
epcv

0m0
F�r,r� ,

�12�

which is the matrix element of the operators d̂��r� in Eq. �6�
calculated between the wave functions of the valence band,
��3 /2, and the conduction band, ��1 /2, all taken in the
electron representation. In Eq. �12�, e is the electron charge,
m0 is the free electron mass, and pcv= �S�p̂x�X= �S�p̂y�Y
= �S�p̂z�Z is the interband matrix element of the momentum
operator taken between the conduction- and valence-band
Bloch functions at the � point of the Brillouin zone, S and
�X ,Y ,Z�, respectively. Finally,39
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F�re,rh� = �h�rh��e
�tr��re�� d3r��e�r���e

�tr��r�� , �13�

where �e
�tr� and �h are, respectively, the electron and heavy-

hole envelope functions in a trion, and �e is the envelope
function of a single �resident� electron confined in a QD.
These wave functions are chosen to be real. In derivation of
Eq. �13� we assumed that the QD is small enough so that the
electron and hole motion in a trion can be treated indepen-
dently, but allowed for the different orbital functions of the
resident electron and the electrons in a singlet trion.40 Note,
that in Eq. �13� F�re ,rh� is taken at the coinciding coordi-
nates of the carriers, re=rh=r.

Due to a very short time scale of the pump pulse we
completely neglect the electron and hole spin precession dur-
ing pulse action as well as spin dephasing and radiative de-
cay processes in Eqs. �10� and �11�. This allows us to write
them in terms of the wave function components ��1/2, ��3/2,
see Eq. �8�. Otherwise we would need to use the density
matrix approach and the optical Bloch equations.41 The dy-
namics of the electron spin polarization described by Eqs.
�10� and �11� was considered before in Ref. 13 in the case of
a rectangular shape pulse with the resonant carrying fre-
quency P=0. This paper generalizes the consideration for
detuned pulses of an arbitrary shape.

To be specific we consider the excitation of the QD by a
�+ polarized light pulse; the difference in the dynamics of
the electron spin polarization created under the �− photoex-
citation is briefly discussed below. Before the pump-pulse
arrival the QD is always in the ground state because the
pump repetition period is much longer than the trion lifetime
in the QD. For the �+ polarized excitation the component
�−1/2 of the QD wave function is conserved, and �−3/2
0.
This allows one to reduce the set of Eqs. �10� to a single
equation for the component �1/2�t�

�̈1/2 − �i� +
ḟ�t�
f�t�

��̇1/2 + f2�t��1/2 = 0. �14�

Here �=P−0 is the detuning between the pump fre-
quency and the trion resonance frequency, and f�t� is a
smooth envelope of pump pulse defined as

f�t� = −
eiPt

�
� d�r�E�+

�r,t�d3r .

It follows from Eq. �14� that the values �1/2 and �̇1/2
before and after the pulse action are connected linearly.42

Taking into account that the initial conditions for Eqs. �10�
are �1/2�−��=const, �3/2�−��=0 and, therefore, �̇1/2�−��
=0, one can represent the solution of Eq. �14� at t�	p, i.e.,
after the pulse is over, as

�1/2��� = Qei��1/2�− �� . �15�

Here the real coefficient Q satisfies the condition 0�Q�1
and the phase � can be chosen in the interval between −�
and �. Both parameters are determined by the pump-pulse
shape, power, and detuning. Equations �9� and �15� deter-
mine the modification of the electron spin polarization from

a short pulse of an arbitrary shape. Taking into account that
�−1/2 is conserved under the �+ polarized excitation, the elec-
tron spin before the pulse arrival, S−= �Sx

− ,Sy
− ,Sz

−�, and just
after the end of the pulse, S+= �Sx

+ ,Sy
+ ,Sz

+�, are connected by

Sz
+ =

Q2 − 1

4
+

Q2 + 1

2
Sz

−, �16a�

Sx
+ = Q cos �Sx

− + Q sin �Sy
−, �16b�

Sy
+ = Q cos �Sy

− − Q sin �Sx
−. �16c�

Although Eqs. �16� are derived for the pure spin states they
are valid as well for the mixed states whenever the pulse
duration 	p is much shorter than the spin relaxation times in
the QD and the time of electron and hole spin precession in
a transverse magnetic field.

Using Eqs. �10� one can show that ��1/2�t��2+ ��3/2�t��2
= ��1/2�−���2. It follows then that the z component of the
postpulse trion spin polarization formally defined as Jz
= ���3/2����2− ��−3/2����2� /2 is equal to

Jz = Sz
− − Sz

+. �17�

Derivation of the relation between S+ and S− established
by the �− circularly polarized pulse gives equations similar
to Eqs. �15�. One has, however, to change the sign of the first
term in Eq. �16a� and replace � by −� in Eqs. �16b� and
�16c�.

Equations �15� and �17� are the main result of this section.
They show how the short pulses of circularly polarized light
create and control the electron spin polarization in n-type
QDs under the resonant trion excitation. At low pump inten-
sities the electron spin is weakly affected and a value of Qei�

slightly deviates from unity. For high intensities the coeffi-
cient Q noticeably decreases and the phase � shifts from
zero. One can see from Eq. �16a� that the �+ circularly po-
larized pulse modifies the z component of electron spin po-
larization by Sz

+−Sz
−= �Q2−1��1+2Sz

−� /4. The pump pulse
also leads to the in-plane rotation of the electron spin polar-
ization along the light propagation direction for pulses with
��0 �see Eqs. �16b� and �16c�� similarly to spin rotation in
a longitudinal magnetic field B 	 z.

It is easy to show that the phase � becomes nonzero due
to detuning between the resonant and pump frequencies. In-
deed, under resonant conditions, �=0, or small detuning,

�	p
1, one can neglect i� as compared with ḟ�t� / f�t�
�	p

−1 in Eq. �14� and produce the solution in the form

�1/2�t� = �1/2�− ��cos��
−�

t

f�t��dt�� . �18�

The direct comparison with Eq. �15� gives �
0 and Q
=cos�� /2�, where

� = 2�
−�

�

f�t��dt� �19�

is the effective pulse area. This consideration shows that only
detuned pump pulses give rise to ��0 and generate an ef-
fective magnetic field acting on an electron spin in the QD.
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The pulse tuned resonantly to the trion transition causes no
rotation of the in-plane spin components, and the electron
spin dynamics is independent of the pulse shape and is con-
trolled only by the pulse area �.

Let us now analyze the dependence of Q and � on the
pulse parameters for the detuned pulses. In the general case
of an arbitrary pump-pulse power, its arbitrary detuning and
shape, Eq. �14� can be solved only numerically. The analyti-
cal solutions of Eq. �14� are known for the two pulse shapes:
�i� for pulses with rectangular shape, f�t�= f0
const�0 for
�t��	p /2 and f�t�=0 otherwise, �ii� for smooth pulses of the
shape suggested by Rosen and Zener,43

f�t� =
�

cosh��t/	p�
, �20�

where the coefficient � is a measure of the pulse electric-
field strength. The effective areas of these pulses are equal to
�=2f0	p and �=2�	p, respectively.

For f�t� taken in the form of Eq. �20� one can write the
solution of Eq. �14� following Ref. 43 in terms of the hyper-
geometric function

�1/2�t� = �1/2�− ��

� 2F1� �

2�
,−

�

2�
;
1

2
− iy ;

1

2
tanh��t

	p
� +

1

2
� ,

�21�

where �=2�	p and the dimensionless detuning y
=�	p / �2��. This leads to explicit expressions for Q and �,

Q = � �2�1

2
− iy�

��1

2
−

�

2�
− iy���1

2
+

�

2�
− iy��

=�1 −
sin2��/2�
cosh2��y�

, �22�

� = arg� �2�1

2
− iy�

��1

2
−

�

2�
− iy���1

2
+

�

2�
− iy�� . �23�

In the case of a rectangular shaped pulse we obtain

Q =�1 −
�2

x2 sin2 x

2
, �24�

� = �y − � , �25�

where the effective Rabi frequency

x = ��2�y�2 + �2, �26�

and sin �= �2�y /Qx�sin�x /2�. One can see from Eqs. �23�
and �25� that � changes its sign with reversal of the detuning
parameter y. For circularly polarized pump pulses, this
means that the sign of detuning determines the rotation di-
rection of the electron spin polarization and its reversal is

similar to switching the effective magnetic field from one
direction to the opposite.

According to Eqs. �15� and �17� the reorientation of elec-
tron spin polarization by short pulses with Q=0 or Q=1
becomes deterministic and can be used for controllable ma-
nipulation of a single electron spin. The pump pulses with
Q=0 completely erase, for any detuning, the in-plane spin
components13,31 leading to the alignment of the electron spin
along the z axis. On the other hand, the pulses with Q=1 lead
to a controllable rotation of the electron spin in the �x ,y�
plane and make no effect on the spin z component. The ro-
tation angle equals to � and is determined by the detuning.31

It follows from Eqs. �22�–�25� that the value Q=0 can be
reached only with the pulses tuned to the resonance �y=0�
and having the areas �=� ,3� , . . . �the so-called � pulses�.
In the case of Rosen and Zener pulses31 the condition Q=1 is
realized for any detuning if �=2� ,4� , . . . �2� pulses�. For
the rectangular pulses this condition can be reached only for
certain combinations of the detuning and pulse area when the
effective Rabi frequency x=��2�y�2+�2=2�N with N be-
ing an integer.

Figure 2 shows the calculated dependences of Q and � on
the detuning for four pulse areas �, each for rectangular and
Rosen and Zener pulse shapes. For large detuning, y= �P
−0�	p /2��1, Q is close to 1, � tends to 0. Therefore, the
electron spin state in a QD is unaffected by the strongly
detuned pulses. For the area �=�, the function Q�y� has a
sharp dip at y=0 reaching zero value at this particular point.
Thus, for � pulses tuned to the resonance 0 the parameter Q
vanishes and, as stated above, the pump pulses suppress the
transverse spin components Sx

+ and Sy
+. Deviation of � from

� converts the dip into a smooth minimum. In accordance
with Eq. �22�, the pulses with the areas � and 2�−� pro-
duce the same Q. The signs of the phase � and detuning are
opposite, and � makes, at zero detuning, an abrupt jump
from its positive maximum value to the negative minimum

FIG. 2. �Color online� Dependence of Q and � on detuning y
= �P−0�	p /2� for pulses having the rectangular shape ��a� and
�b�� and Rosen and Zener shape ��c� and �d�� calculated for several
pulse areas �=� /2,� ,3� /2,2�. Insets demonstrate shapes of
pulses.
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value. The altitude of this jump rises along with the pump-
pulse area. Although the both pulse shapes lead to generally
similar dependences of Q or � on the detuning, the rectan-
gular shape pulses give rise to additional oscillations on the
curves Q�y� , ��y� clearly seen in Figs. 2�a� and 2�b�. These
oscillations are connected with the oscillating character of
the Fourier transform of a rectangular shaped signal. They
are absent for the Rosen-Zener pulse, for the general case of
a smooth pulse these oscillations are much weaker than for
the rectangular pulse. One can see that, for ���, Q�y� has
several minima at y�0. This occurs because at these detun-
ing the effective Rabi frequency, x, approaches to the N�
with N=1,3 ,5. . ..

Figure 3 compares the z-component Sz
+ of electron spin

polarization created by rectangular �dash-dot black curves�
and Rosen and Zener �solid red curves� pulses of different
areas � in singly charged QDs with zero spin, Sz

−=0, before
the pulse arrival. On can see that the rectangular pulses with
��� result in intensive oscillations of Sz

+ at large-scale de-
tuning, whereas oscillations are completely absent for the
Rosen and Zener pulses. The oscillations are again connected
with the shape of the Fourier transform of a rectangular sig-
nal. One can see in Fig. 3�d� that detuned pulses of a differ-
ent shape create a completely different electron spin polar-
ization.

B. Temporal dynamics of electron and trion spin
polarization after the pulse

The temporal dynamics of electron and trion spin polar-
ization in a QD after its excitation by the short pump pulse
can be determined from the kinetic equations for the electron
spin polarization S and z-component Jz of the trion spin
polarization7,13,27

Ṡ + S � � +
S

	s,e
=

Jzoz

	QD
,

J̇z +
Jz

	QD
+

Jz

	s,h
= 0. �27�

The equations take into account �i� the precession of electron
spins in the in-plane magnetic field B with frequency �, �ii�
the electron spin relaxation, �iii� the spin relaxation of a hole
in the trion, �iv� the radiative decay of the trion, and, finally,
�v� the partial suppression of the electron spin polarization
created by the pulse after the trion recombination. It is ignor-
ing, however, the hole precession. Here 	s,e, 	s,h, and 	QD are

the single electron spin relaxation time, the hole spin relax-
ation time and the trion lifetime, respectively.

The detailed analysis of the spin dynamics in the coupled
electron-trion system has been carried out in Refs. 7 and 27
�see also Refs. 44 and 45�. It is instructive to consider the
simplest case of these dynamics when the hole-in-trion spin
relaxation is much faster than the trion radiative lifetime,
	s,h
	QD, or when the electron spin precession time 2� /�

	QD. In the both limits the electron remaining in the QD
after the trion recombination becomes completely depolar-
ized and its contribution to the electron spin polarization
created during the pulse is completely negligible.11,13 In this
case the precession of electron spin polarization in a trans-
verse magnetic field after the trion decay is described by the
following set of equations11

Sz�t� = �Sz
+ cos �t + Sy

+ sin �t�e−t/	s,e,

Sy�t� = �Sy
+ cos �t − Sz

+ sin �t�e−t/	s,e,

Sx�t� = Sx
+e−t/	s,e, �28�

where time t is referred to the end of excitation pulse, and the
electron spin polarization components S�

+ ��=x ,y ,z� created
by the pulse are defined by Eqs. �16�.

C. Electron spin polarization created in QDs
by an infinite train of short pulses

In the pump-probe Faraday and Kerr rotation experiments
the sample is usually subjected to a train of pump pulses that
follow with a certain repetition period TR. If the time TR is
comparable with or smaller than the single electron spin re-
laxation time in a QD, TR�	s,e, the electrons retain the
memory of being exposed to the previous pulses. The infinite
train of pulses creates a steady state of the electron spin
polarization in the QDs periodically varying in time with the
same period TR, which leads to a number of remarkable phe-
nomena such as the resonant spin amplification3,44 and the
mode locking of electron spin coherence.11,12 The time evo-
lution between the pulses is described by Eq. �28� where S�

+

��=x ,y ,z� are the components of spin polarization taken at
the end of any pump pulse. To find these components one
should associate the polarization �28� at the moment t=TR
with the spin polarization at the moment before arrival of the
next pulse, S�TR�
S−, and interconnect it with S+ according
to Eqs. �16�. As a result we obtain self-consistent equations
for the components S�

+. Solving them and substituting the

FIG. 3. �Color online� Effect
of detuning P−0 on the z com-
ponent of electron spin polariza-
tion, Sz

+, created by the rectangular
�dash-dot black curves� and Rosen
and Zener �solid red curves�
pulses. Curves are calculated us-
ing Eq. �16a� with Sz

−=0 and Eqs.
�22� and �24� for the pulse areas:
�=0.5� �a�, � �b�, 1.5� �c�, and
2� �d�.
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solution into Eq. �15� we find the components S�
− which can

be written as

Sx
− = KSy

−,

Sy
− =

1 − Q2

4�
e−TR/	s,e sin��TR� ,

Sz
− =

1 − Q2

4�
e−TR/	s,e

� �Q�cos � − K sin ��e−TR/	s,e − cos��TR�� , �29�

where

� = 1 − e−TR/	s,e � �1 + Q2

2
+ Q�cos � − K sin ���cos��TR�

+
Q�1 + Q2�

2
e−2TR/	s,e�cos � − K sin �� ,

K =
Qe−TR/	s,e sin �

1 − Qe−TR/	s,e cos �
. �30�

One can check that, for a periodic train of pulses of arbi-
trary intensity and shape, the electron spin polarization
reaches the highest value at the magnetic field satisfying the
PSC condition �=2�N /TR, where N is an integer.3,11,12,44

For such electrons cos��TR�=1 and the z component of their
spin polarization at the moment of pulse arrival can be writ-
ten as

Sz
− = −

1

2

1 − Q2

2eTR/	s,e − 1 − Q2 . �31�

Equation �31� shows that the maximum value of �Sz
−� is inde-

pendent of the phase shift � between �1/2��� and �1/2�−��.
For pulses with Q=1 the orientation of electron spins does
not occur since such pulses rotate the in-plane spin compo-
nents but do not generate the spin coherence. Quite often the
pulse repetition period used in experiments is much shorter
than spin relaxation time: TR
	s,e.

13 This allows to rewrite
Eq. �31� as

Sz
− � −

1

2

1

1 + 2TR/�	s,e�1 − Q2��
. �32�

One can see that even in the case of weak excitation where
1−Q2
1 the electron spin satisfying the PSC reaches its
utmost alignment Sz

−�−1 /2 if

2
TR

	s,e

 1 − Q2 =

sin2��/2�
cosh2��y�

. �33�

The latter equality is valid for Rosen and Zener pulses. For
the large ratio 	s,e /TR even quite detuned pulses, e.g., with
�P−0�	p�3, are still quite efficient in the spin alignment.
A train of weak pulses, however, synchronizes electron spin
precession only in a very narrow frequency range around the
PSC. As a result the frequency dependence of Sz

−��� created
by such a train has a periodic form with sharp minima at the
frequencies satisfying the PSC

Sz
− � ���TR − 2�N�2 +

TR
2

	s,e
2 + �2

+ �1 − Q�2 + 2
TR

	s,e
�1 − Q��−1

. �34�

Here it is assumed that 1−Q
1, TR
	s,e, and �
1. The
width of the minima is proportional to

1

TR
�� TR

	s,e
�2

+ 2�1 − Q�
TR

	s,e
+ �1 − Q�2 + �2,

i.e., it is determined either by the spin relaxation rate 	s,e
−1 or

by the effective pump area 1−Q and phase �. Figure 4
shows just one period of this dependence.

The modulation of the electron spin polarization Sz
−���

becomes weaker with the increasing detuning. For example,
assuming �= �� /2 and using the condition TR
	s,e one
can derive for arbitrary Q

Sz
−��� = −

1

2

Q2 + cos �TR

Q2 + 2 − cos �TR
, �35�

which is a much smoother function of � as compared with
Eq. �34�.

For the �-pulse excitation �Q→0� which can be realized
only in the absence of detuning ��=0� we arrive at11

Sz
− = −

1

2

cos �TR

2 − cos �TR
. �36�

The polarization Sz
− reaches its minimum value −1 /2 when

the electron spin precession frequency satisfies the PSC con-
dition.

FIG. 4. �Color online� Electron spin polarization, Sz
−, created by

a train of Rosen and Zener pump pulses with the repetition fre-
quency TR=13.2 ns at the moment of pulse arrival as a function of
the electron spin precession frequency �. Dependences shown on
panels �a� and �b� are calculated, respectively, for zero detuning
between the pump frequency and quantum dot frequency, P=0,
and for the detuning P−0=1.6� /	p. The chosen pulse areas are
�=0.5� ,� and 1.5�. For g factor from Ref. 11 the value of
�TR /2�=105 is reached at a magnetic field B=1 T. The calcula-
tions used 	s,e=3 �s from Ref. 11.
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For a given pulse shape the phase � and the factor Q are
interconnected and, in general, a change of the pulse area
results in changes of both Q and �. Figure 4 shows the z
component of electron spin polarization, Sz

−, at the moment
of pulse arrival calculated as a function of the Larmor fre-
quency for different pulse areas under resonant excitation
and for zero and nonzero detuning, panels �a� and �b�, re-
spectively. One can see from Fig. 4�a� that for zero detuning
��=0� and small pulse areas, Sz

− exhibits a sharp minimum
as a function of Larmor precession frequency in agreement
with the above analytical considerations. The increase of the
pulse area transforms this minimum to the cosinelike curve.

Figure 4�b� shows Sz
−��� created by an appreciably de-

tuned pulse train, P−0=1.6� /	p. In agreement with Fig. 2
the effective pump power in this case is small, i.e., Q is close
to 1. An increase of the pump area from � /2 to � leads to a
small decrease of Q and a nonzero value of �. As a result the
minimum at the spin precession frequency � satisfying the
PSC becomes deeper and wider. The further increase of the
pump area results in additional widening of the minimum
due to the increase of � but the its depth becomes smaller
since Q starts to increase.

III. PROBING SPIN DYNAMICS IN QUANTUM DOTS

The detection of the QD spin polarization in pump-probe
Faraday and Kerr rotation experiments is carried out by a
linearly polarized probe pulse. The electric field of the probe
pulse shown in Fig. 1 oscillates along the x axis and similarly
to Eq. �7� it can be written as

Epr�r,t� = Ex
pr�r,t�

o+ + o−

�2
+ c.c. �37�

Here we assume that Ex
pr�r , t��e−iprt, where pr is the carry-

ing frequency of the probe light. In order to calculate Fara-
day and Kerr rotation angles of polarization plane of the
probe pulse as well as the ellipticity we first find the QD
polarization induced by the probe field and then calculate the
secondary electric field induced by the QD array.

A. Probe-induced polarization of QDs

Before the probe pulse arrival the electronic state of a QD
is described by the wave function �8�. We consider the gen-
eral case where the QD is characterized by the population of
the electron ne= ��1/2�2+ ��−1/2�2 and trion ntr= ��3/2�2
+ ��−3/2�2 states and the spin polarization of these states Sz
= ���1/2�2− ��−1/2�2� /2�0 and Jz= ���3/2�2− ��−3/2�2� /2�0, re-
spectively. Solving Eqs. �10� and �11� in the lowest order in
Epr we find the probe-induced corrections to the electron and
trion components of the wave function

���3/2 = ��1/2�
−�

t V�t��
i�

e−i0�t−t��dt�,

���1/2 = ��3/2�
−�

t V��t��
i�

ei0�t−t��dt�, �38�

where

V�t� = −
1
�2
� d�r�Ex

pr�r,t�d3r . �39�

The electron-trion superposition excited in a QD by the
light pulses creates a local polarization, whose magnitude
depends on the components of the wave function described
in Eq. �8�. According to the selection rules, the circular com-
ponents of the QD dielectric polarization can be written as

P�+�r� = d��r���3/2 + ��3/2���1/2 + ��1/2�� + c.c.,

P�−�r� = d��r���−3/2 + ��−3/2���−1/2 + ��−1/2�� + c.c.,

�40�

where the effective transition dipole is defined by Eq. �12�.
In Eqs. �40� the zero-order contributions, which are propor-
tional to �3/2�1/2

� and �−3/2�−1/2
� , determine the QD emission

due to the presence of photoexcited trions. They make no
contribution to the measured pump-probe rotation signal and
will not be considered further. The other contributions in
Eqs. �40� are induced by the probe pulse. The Faraday and
Kerr rotation of the probe light polarization as well as its
ellipticity are determined only by the terms linear in ���1/2
and ���3/2. Combining Eqs. �40� we can write the linearly
polarized components of the QD polarization induced by the
probe pulse as follows:

�Px
QD�r,t� = −

ne − ntr

2i�
d��r�� d3r��

−�

t

dt�ei0�t�−t�d�r��

�Ex
pr�r�,t�� + c.c,

�Py
QD�r,t� = −

Sz − Jz

�
d��r�� d3r��

−�

t

dt�ei0�t�−t�d�r��

�Ex
pr�r�,t�� + c.c. �41�

The light wavelength is usually much larger than the size of
self-organized QDs. This allows one to extract the probe
electric field Ex

pr�r� , t�� from the integral and present the QD
polarization in the approximate �-function-like form

�P�
QD�r,R j,t� = ��r − R j����R j,t� �� = x,y� ,

where R j is the position of jth QD. The resulting probe-field
induced polarization of a single QD can be expressed as

�x�R j,t� = −
ne − ntr

2i�
�D�2�

−�

t

ei0�t�−t�Ex
pr�R j,t��dt� + c.c.,

�42�

�y�R j,t� = −
Sz − Jz

�
�D�2�

−�

t

ei0�t�−t�Ex
pr�R j,t��dt� + c.c.,

�43�

via the integral QD transition dipole D=�d3rd�r� related to
the two-particle wave function F�r ,r�,
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�D�2 =
e2�pcv�2

0
2m0

2 �� F�r,r�d3r�2

.

As one can see from Eqs. �41� the probe-induced QD
polarization �PQD consists of two components. The first,
�Px

QD, is parallel to the probe polarization plane and its mag-
nitude is proportional to the difference of electron and trion
occupation numbers. The second component, �Py

QD, is or-
thogonal to the probe polarization plane and its magnitude is
proportional to the difference of the electron and trion spin
polarizations. The latter polarization component is respon-
sible for the probe-pulse polarization plane rotation, i.e., spin
Faraday and Kerr effects, and for circular dichroism �ellip-
ticity of the transmitted or reflected probe beam�. Note that
the appearance of the �Py

QD component is not a direct con-
sequence of the spin-orbit interaction: this component is not
relativistically small as compared with �Px

QD.

B. Circular birefringence and dichroism
induced by photoexcited QDs

Once the probe-induced dielectric polarization of the QD
is known, it is possible to calculate an electric field induced
by the QD ensemble and, therefore, find the probe polariza-
tion plane rotation and ellipticity. First we consider an ex-
perimental situation where pumping and probing are carried
out on a planar array of QDs. Then we generalize the results
to a stack of such QD planes and a bulk array of QDs.

Let us consider a layer of self-organized QDs forming the
plane z=0. The total electric field E at the carrier frequency
pr �Ref. 46� in the system can be represented as a sum of the
incident electric field E0

pr�t�eiqz and the electric field induced
by the QD dielectric polarization �PQD. The field E satisfies
the electromagnetic wave equations

�E�r,t� − grad div E�r,t� = − �pr

c
�2

��bE�r,t� + 4�Ptot�r,t�� ,

�44�

div��bE�r,t� + 4�Ptot�r,t�� = 0. �45�

Here �b is the dielectric constant of the cap layer assumed to
coincide with the background dielectric constant of the QDs;
Ptot�r , t�=� j�PQD�r ,R j , t� is the sum of the probe-induced
polarizations over all QDs; pr is the carrying frequency; and
c is the speed of light in vacuum. Although the pumping and
probing of QDs is performed by short pulses, their duration
	p is assumed to exceed by far the period of electro-magnetic
field oscillations 2� /pr. Therefore, the solutions of Eqs.
�44� and �45� are quasimonochromatic waves with slowly
varying amplitudes. Note, that in electrodynamics of con-
tinuous media, see e.g., Ref. 47, the extraneous charge den-
sity,  ex, and current, jex, replace the terms proportional to
Ptot in Eqs. �44� and �45�. The extraneous charge density and
current are connected with Ptot by the following relation-
ships,

jex�r,t� = − iprPtot�r,t�,  ex�r,t� = −
i

pr
div jex�r,t� .

It follows from Eq. �45� that div E=−�4� /�b�div Ptot�r�
which allows us to rewrite Eq. �44� in the form

�E�r,t� + q2E�r,t� = − 4��pr

c
�2

�1 + q−2 grad div�Ptot�r,t� ,

�46�

where q=pr
��b /c. By introducing the Green’s function for

the three-dimensional space

G�r� =
exp�iqr�

4�r
, �47�

Equation �46� can further be transformed into an integral
equation

E�r,t� = E0
pr�t�eiqz + 4��pr

c
�2� d3r�G�r − r��

��1 + q−2 grad div�Ptot�r�,t� . �48�

A plane wave of the probe electromagnetic field propagat-
ing along the z direction creates a dielectric polarization in
QDs randomly distributed in the plane z=0. Assuming the
interdot distances to be smaller than the light wavelength one
can neglect the q−2 grad div term in the integral of Eq. �48�
and average Ptot�r� over the distribution of QDs. As a result
we can replace ��R j , t� by the coordinate independent vector
��t�. This allows us to rewrite Eq. �48� in the following
form:

E�r,t� = E0
pr�t�eiqz + 4��pr

c
�2

��t��
j
� d2 �dz�G�r − r��

���� j − �����z�� , �49�

where � j are the QD positions in the two-dimensional layer.
Assuming that QDs in the array are identical and randomly
distributed we replace the sum in Eq. �49� by the integral and
arrive at

E�r,t� = E0
pr�t�eiqz + 4��pr

c
�2 i

2q
eiq�z�NQD

2D ��t� , �50�

where NQD
2D is the two-dimensional density of QDs. Deriving

Eq. �50� we used the following property of two-dimensional
integral

� 2� d 
exp�iq�z2 +  2�

4��z2 +  2
=

i

2q
exp�iq�z�� ,

which can be proven by adding a small positive imaginary
part to q and setting it to +0.

It is convenient to represent the electric field in a QD
sample as
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E�r,t� = E0
pr�t�eiqz + �E�t�eiq�z�, �51�

where the first term is just the incident probe field and the
second term describes the secondary field induced by QDs:

�E�t� = 4��pr

c
�2 i

2q
NQD

2D ��t� . �52�

This equation allows one to find magnitudes of the Faraday
rotation signals and ellipticity.

If the sample contains M layers of QDs and the stack
thickness d is smaller than the light wavelength then the
second term in Eq. �51� should merely be multiplied by M.
In a more conventional description of three-dimensional
�3D� ensemble of QDs, the factor MNQD

2D can be rewritten as
dNQD

3D , where NQD
3D is the 3D concentration of QDs.

The straightforward calculation shows that the Faraday
rotation signal defined by Eq. �1� can be presented as

F = − 2�
−�

�

Re�E0,x
pr��t��Ey�t��dt , �53�

where only a contribution linear in �E is taken into account.
Substituting �Ey from Eqs. �43� and �52� we arrive at

F =
3�

q2	QD
NQD

2D �Jz − Sz�

�Im��
−�

�

dt�
−�

t

dt�ei0�t�−t�E0,x
pr��t�E0,x

pr �t��� , �54�

where 	QD is the radiative lifetime of an electron-hole pair
confined in a QD,

1

	QD
=

4

3

q3

�b�
�D�2. �55�

Similarly, the calculation of the ellipticity defined by Eq.
�4� results in

E = − 2�
−�

�

Im�E0,x
pr��t��Ey�t��dt . �56�

Substituting �Ey from Eqs. �43� and �52� we obtain

E =
3�

q2	QD
NQD

2D �Jz − Sz�

�Re��
−�

�

dt�
−�

t

dt�ei0�t�−t�E0,x
pr��t�E0,x

pr �t��� . �57�

In samples with a cap layer, see Fig. 5, the Faraday rota-
tion and ellipticity signals acquire an extra factor t10t01 in Eq.
�54�, where t01 and t10 are the transmission coefficients
through the interface from the cap layer to vacuum and vice
versa, respectively.

The cap layer strongly influences the Kerr effect, i.e., the
polarization plane rotation in the reflection geometry. This
happens because its magnitude is determined by the interfer-
ence between the probe beam reflected from the cap layer
and the secondary wave induced by the QDs, see Fig. 5. The
phase difference of the reflected and secondary waves is de-
termined by the cap layer thickness L leading to the follow-

ing expression for the Kerr rotation magnitude

K = r01t01t10�cos�2qL�F + sin�2qL�E� , �58�

where F and E are given by Eqs. �54� and �57�, respectively,
and r01 is the reflection coefficient from the vacuum-cap
layer interface. It is seen that the Kerr effect measures, in
general, a superposition of the Faraday rotation and elliptic-
ity signals.

Equations �54� and �57� demonstrate that Faraday, ellip-
ticity, and therefore Kerr signals �see Eq. �58�� are propor-
tional to the difference of electron and trion spin polarization
in QDs: Sz−Jz. The magnitudes of the effects are propor-
tional to the QD density and increase with a decrease of the
radiative lifetime 	QD due to an increase of the transition
dipole moment.

In order to analyze the dependence of the Faraday and
ellipticity signals on the detuning between probe frequency,
pr, and trion resonance frequency, 0, we represent probe
field as E0

pr�t�=E�0�s�t�e−iprt, where s�t� is the envelope func-
tion. It can be seen from Eqs. �54� and �57� that

F � Im G�pr − 0�, E � Re G�pr − 0� , �59�

where

G�!� = �
−�

�

dt�
−�

t

dt�s�t�s�t��ei!�t−t��, �60�

with !=pr−0. It can be recast as a half axis Fourier trans-
form of the probe autocorrelation function

G�!� = �
0

+�

dtei!t�
−�

�

dt�s�t��s�t + t��

and calculated for particular pulse shapes as follows:

FIG. 5. �Color online� Schematic image of the light propagation
in a QD structure, which contains a QD layer overgrown by a cap
layer of the thickness L. Long arrows show the transmission and
reflection of the incident probe light �with the electric-field ampli-
tude E0� on the external surface while short arrows illustrate the
creation of the secondary field, �E, due to scattering of the trans-
mitted light by QDs. r10, t10, and t01 are the corresponding reflection
and transmission coefficients.
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G�!� =�
1

!2 �i!	p + 1 − ei!	p� for s�t� = 1 if − 	p/2 � t � 	p/2 and s�t� = 0 otherwise,

	p
2

�2"�2, 1
2 −

i!	p

2�
� for s�t� = cosh−1��t/	p� ,

	p
2 2 + i!	p�3 + !2	p

2�
�1 + !2	p

2�2 for s�t� = e−�t�/	p,
� �61�

where "�a ,b� is the generalized Riemann " function defined
as "�a ,b�=�k=0

� �k+b�−a.
Figure 6 shows the real and imaginary parts of G calcu-

lated for the pulses of rectangular shape �panel �a�� and
Rosen and Zener shape �panel �b��, respectively. For both
pulse shapes the dependences G�!� look qualitatively very
similar. One can see that the Faraday and ellipticity signals
are, respectively, odd and even functions of the detuning.
Therefore, the ellipticity reaches its maximum sensitivity for
zero detuning, !=0, whereas the Faraday signal is most sen-
sitive for the detuned probe pulses with �!�	p�1. The Kerr
signal dependence on detuning has, in general, an asymmet-
ric profile due to a combined contribution from F and E to its
magnitude, see Eq. �58�. As shown below, this different fre-
quency sensitivity leads to the different time-resolved Fara-
day, Kerr and ellipticity signals in a QD ensemble with in-
homogeneously broadened resonant transition energies.

C. Effective media approximation

At the end of this section we establish the link between
the microscopic approach developed above and semiphe-
nomenological effective medium approximation which is a
standard tool for the description of Faraday, Kerr, and ellip-
ticity effects in bulk systems. We demonstrate below that the
effective medium approximation can describe the Faraday
and Kerr effects in a three-dimensional �3D� ensemble of
QDs provided that the QD density satisfies certain condi-
tions.

The irradiation of bulk homogeneous semiconductors
with circularly polarized light creates nonequilibrium popu-
lation of electrons and holes as well as nonequilibrium ori-
entation of their spins and, thus, a nonequilibrium macro-
scopic magnetization. Hence, the semiconductor after the
absorption of a circularly polarized pump pulse changes its
dielectric and magnetic properties. These modifications can
be tested by the linearly polarized probe light: the polariza-
tion plane rotates after its transmission through or reflection
from the photoexcited medium leading to the Faraday and
Kerr effects, respectively. The effects are phenomenologi-
cally described by the Fourier component of the displace-
ment field, D��, which is connected with the Fourier com-
ponent of the electric field of the probe light, E��, by

D = �bE + �ε̂E + i�E � g� . �62�

Here �b is the background dielectric constant, �ε̂ is the spin-
independent modification of the dielectric tensor ε̂ due to the
filling of the conduction- and valence-band edge states by the
photoexcited carriers, and g is the gyration vector pointing in
the direction determined by the spin orientation S of photo-
excited carriers and the point-group symmetry of the system.
In bulk cubic semiconductors g�S and the tensor �ε̂ reduces
to a scalar ��.

The same description can be used for the 3D ensemble of
QDs if their concentration NQD

3D satisfies two conditions. First,
NQD

3D should be sufficiently small so that the QDs may be
considered as independent dipoles. Second, NQD

3D should be
sufficiently large to have the typical distances between QDs
smaller than the light wavelength. The satisfaction of these
conditions allows one to neglect the nonlocality of the QD
response and represent the displacement field D in the QD
sample as

D�r,t� = �bE�r,t� + 4��P�r,t� , �63�

where the optically induced dielectric polarization is related
to the electric field by

�P�r,t� = �
−�

t

#̂�t − t��E�r,t��dt�. �64�

Using Eqs. �42� and �43� we can present nonzero compo-
nents of the tensor #̂�	� as

#xx�	� = #yy�	� = − NQD
3D ne − ntr

2i�
�D�2e−i0	, �65�

FIG. 6. The dependence of real and imaginary parts of G on
detuning, !=pr−0. Dash-dot and solid curves are calculated, re-
spectively, for �a� the rectangular and �b� Rosen and Zener pulses.
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#yx�	� = − #yx�	� = − NQD
3D Sz − Jz

�
�D�2e−i0	. �66�

It follows then that the QD contribution to the frequency-
dependent dielectric permittivity tensor can be written as47

�xx�� = �yy�� = �b + �ne − ntr�
2�NQD

3D �D�2

��0 −  − i0�
,

�yx�� = − �xy�� = �Sz − Jz�
4�iNQD

3D �D�2

��0 −  − i0�
. �67�

Comparison with Eq. �62� shows that the gyration vector g in
the photoexcited QD medium has only one nonzero compo-
nent,

gz = �Jz − Sz�
4�NQD

3D �D�2

��0 −  − i0�
, �68�

which is proportional to the difference of spin densities of
electrons and trions in the system and has a resonance at the
trion excitation frequency. On the other hand, the modifica-
tion of diagonal components of the dielectric tensor �xx
=�yy is proportional to the difference in population of the
electron and trion levels irrespective to the their spin orien-
tation.

IV. TIME-DEPENDENT TRACES OF PUMP-PROBE
KERR AND FARADAY ROTATION

AND ELLIPTICITY SIGNALS

In this section we apply the derived general expressions to
calculate the typical time-dependent traces of two color
pump-probe Faraday and Kerr rotation �FR and KR� signals
as well as the ellipticity created by short pulses of the reso-
nant light and by a train of such pulses in an ensemble of
singly charged QDs. The real QD structures possess two im-
portant properties that strongly affect the time dependent
traces, but have not been considered in the previous sections.
They are �i� inhomogeneity of a QD ensemble expressed in
dispersion of the QD resonant transition energies and elec-
tron g factors, and �ii� dispersion of electron precession fre-
quencies connected with fluctuations of the nuclear contribu-
tion to these frequencies. Here we conduct calculations for
the QD ensemble assuming that the broadening of trion reso-
nance frequency, dispersion of electron g factors and fluctua-
tions of the nuclear contributions to the electron spin preces-
sion frequency are similar to those in the samples studied in
a series of works.11–13,28 Those samples contained 20 layers
of InGaAs QDs, which were self-organized during the
molecular-beam epitaxy growth.

In the following calculations, we neglect the scatter in the
QD oscillator transition strengths and the nuclear-induced
frequency focusing effect.28 For illustrative purposes below
we show the FR and ellipticity signals created by the elec-
tron spin polarization only. We neglect the trion Jz-dependent
contribution to these signals in Eqs. �54� and �57� which
affects the time dependence traces only during the trion re-
combination time 	QD�400 ps.13 As a result, the calculated

dependences can be directly compared with experimental
data only for times longer than 	QD.

A. Modeling of inhomogeneities in a QD ensemble

To model time dependences of the FR and ellipticity sig-
nals generated by the resonant pump pulses of circularly po-
larized light we assume that the distribution of the resonant
transition energies,  opt�0�, in the QD ensemble has the
Gaussian form:

 opt�0� = exp�−
�2�0 − ̄0�2

2��E�2 � , �69�

where ̄0 is the average trion transition frequency and �E is
the half-width of this distribution. The distribution is shown
in Fig. 7. In the calculations we used �̄0=1.4 eV and �E
=6.5 meV from Ref. 11. Only a small part of this distribu-
tion is excited by the pump pulse with 	p=1.5 ps. This part
is proportional to the pulse spectral width �� /	p
=1.75 meV and is centered at the pump carrier frequency
P. The photoexcited part of the QD distribution is shown in
Fig. 7 by a filled Gaussian at low-energy part of  opt�0�.

The dispersion of the electron spin precession frequency
in a QD ensemble is determined both by the dispersion of
electron g factors and by fluctuations of the nuclear contri-
bution to the precession. The electron g factor, ge, depends
generally on the effective energy gap of the QD, i.e., on the
optical transition frequency, as well as on the QD shape and
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FIG. 7. �Color online� Schematic illustration of the resonant
transition energies distribution  opt�0� �black solid line� and the
part of this distribution excited by short resonant pulse �green/gray
profile�. The range of Larmor frequencies created by the short pulse
is shown by the crosshatched region around the linear dependence
�L�0�. Inset shows the distribution of the electron spin precession
frequencies  ��� with �blue/solid line� and without �filled green/
gray area� shape and composition contribution to the g factor dis-
persion and nuclear fluctuations.
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composition.38 Correlation between the average value of g
factor and the trion resonance frequency can by approxi-
mated by a linear function

ge�0� = A�0 + C , �70�

where A and C are fitting parameters. This results in
the dependence of Larmor precession frequency, �L�0�
=�Bge�0�B /�, on a trion optical resonance frequency,
which is shown in Fig. 7 by a thick inclined line. The spread
of �L connected with the g factor dependence on an excita-
tion frequency is controlled by the pump pulse width � /	p.
This spread is marked by a green/gray segment on a linear
dependence of �L�0� in Fig. 7. The distribution of electron
spin precession frequencies,  ��L� created by this effect is
shown in the inset of Fig. 7 by a filled Gaussian. In our
calculations we use A=−1.75 eV−1 and C=2.99 taken from
the fit of experimental data in Ref. 13.

The frequency-dependent regular part of electron g-factor
in Eq. �70� does not by itself provide a complete description
of the electron spin precession frequency dispersion con-
nected with the g factor distribution. This dispersion in a QD
ensemble is strongly affected by the QD shape and compo-
sition. The corresponding distribution of g-factors can be
phenomenologically described by the Gaussian,  g�ge�, with
the root mean square of electron g factor distribution, �ge.

The dispersion of electron spin precession frequencies is
affected also by fluctuations of hyperfine fields of nuclei that
are collectively acting on the localized electron in a QD. The
electron spin precession frequency �=�L+�N=�BgeB /�
+�N contains a nuclear contribution, �N, which is propor-
tional to the projection of the nuclear spin polarization on the
external field �if external field is much larger than nuclear
field fluctuations, which usually is the case�.28 The nuclear
contribution is connected with statistical fluctuations of the
nuclear spin polarization in a QD. The fluctuations are de-
scribed by a Gaussian with the dispersion �N proportional
to N−1/2, where N is the number of nuclei in the QD
volume.48 We ignore the nuclear-induced frequency focusing
effect,49 which could modify the density of electron spin pre-
cession modes to a comblike shape in a QD ensemble ex-
posed to a pulse train excitation Ref. 28.

The resulting broadening of electron spin precession fre-
quencies connected with g factor dispersion and with nuclear
fluctuations,  ���= ��BgeB /�+N� is also described by the
Gaussian,

 ��� =
1

�2���
exp�−

�� − �L�2

2����2 � , �71�

where ��=���B�geB /��2+ ��N�2 is the total frequency
dispersion. The range of electron spin precession frequencies
generated by the pulse due to this dispersion is shown in Fig.
7 by the crosshatched region around the linear dependence
�L�0�. The calculations were conducted for �ge=0.0037
�Ref. 13� and �N=3.7�108 rad/s, extracted from the am-
plitude of random nuclear fluctuation field of 7.5 mT.50 We
assume that �ge and �N are independent of the QD reso-
nance energy. One can see that for the set of �ge and �N,
the dispersion of electron spin precession frequencies  ��� is

much broader than the one created by the g-factor depen-
dence on the excitation frequency �see insert in Fig. 7�. This
additional broadening leads to the fast dephasing of electron
spin polarization and should be taken into account in a de-
scription of the time dependence of FR and ellipticity sig-
nals.

To obtain the time-dependent traces of the FR and ellip-
ticity signals for the QD ensemble we average Eqs. �54� and
�57� over the distribution of optical transition energies,
 opt�0�, described by Eq. �69� and over distribution of elec-
tron spin precession frequencies,  ���, described by Eq.
�71�. Without any calculations, however, one can notice from
Eq. �54� that in the degenerate case when pr=P, the FR
signal vanishes if Sz and Jz and all dispersion functions are
even functions of the detuning, pr−0, because the signal is
proportional to the odd function of detuning Im�G�pr
−0��. For the degenerate case, the FR signal could arise for
excitation at one side of the  opt�0� distribution, or as a
result of dependence of electron g factors or oscillator tran-
sition strengths on the optical transition energy.

B. Effects of a single pump pulse

We start by considering the two color FR and ellipticity
signals excited by a single pump pulse as function of the
time delay between pump and probe pulses with frequencies
P and pr, respectively. To clarify qualitative differences
between FR and ellipticity signals we assume here and in the
following section �Sec. IV C� that  opt�0� is independent of
0 or, equivalently, that the resonant excitation of QDs is
performed at the maximum of  opt�0�, which is so broad
that �E�� /	p. To obtain a nonvanishing FR signal,
however, we take into account the dependence of an electron
g-factor on the resonance transition frequency, 0, see
Eq. �70�.

Figure 8�a� shows the traces of FR and ellipticity signals
for the degenerate case �P=pr� calculated in a magnetic
field of B=1 T for the QD ensemble using the average g
factor, its dependence on 0 and 	s,e extracted from the data
of Refs. 11 and 13. The trace of the ellipticity signal demon-
strates damped oscillations with the decay determined by the
dispersion of electron spin precession frequencies.

Figure 8�a� shows also that the FR signal is absent at zero
delay time, as expected due to symmetric distribution Sz and
 opt�0� around pumping frequency. Surprisingly, however,
this signal is growing in time. This happens because the elec-
tron spin distribution created by the pump pulse being ini-
tially symmetric around P �see Fig. 8�c�� is gradually losing
its symmetry due to different Larmor precession frequencies
on the low- and high-energy wings of the QD distribution as
described by Eq. �70�. This imbalance of the electron spin
polarization connected with the electron g factor dependence
on 0 results in the growth of the FR signal with time. The
inset in Fig. 8�a� shows also a phase shift between the Fara-
day rotation and ellipticity signals. Calculations show �not
presented� that oscillation frequencies of the FR and elliptic-
ity signals are also slightly different. The effect is connected
with different spectral contributions to the FR and ellipticity
and results in a weak time dependence of the phase shift.
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Figure 8�b� shows FR and ellipticity signals for the non-
degenerate case where pump and probe pulses are detuned:
P−pr=0.8� /	p. The electron spin polarization created in
this case is not a symmetric function of pr−0 as one can
see in Fig. 8�d�, and the probe light measures the electron
spin polarization only at one of the spin distribution wings.
Therefore, at t=0 the FR signal is nonzero and its time dy-
namics is qualitatively similar to that of the ellipticity signal.
It is seen from inset in Fig. 8�b� that the phase shift between
Faraday rotation and ellipticity signals is close to �. The
phase shift and the sign of the FR signal, correspondingly,
depends on the sign of the pump-probe detuning because
Im�G�pr−0�� is an odd function of the detuning.

C. Effects of an infinite train of pump pulses

Figure 9 shows the time dependent traces of the FR and
ellipticity signals initiated by a train of short pulses of circu-
larly polarized light with the repetition period TR=13.2 ns in
the degenerate regime P=pr. Calculations were conducted
for the pulse duration 	p=1.5 ps and magnetic fields B
=1 T and B=5 T �panels �a� and �b�, correspondingly�.
Panel �c� shows the results calculated for 	p=100 fs and B
=1 T. The commonly used repetition period of the mode-
locked lasers TR is about 10 ns, which is much shorter than
the typical electron spin relaxation time in a QD. As a result,
the infinite train of such pulses creates a stationary distribu-
tion of rotating spin polarization Sz�� ; t�, which strongly
modifies the FR and ellipticity signals from those created by

a single pump pulse. The traces in Figs. 9�a�–9�c� are calcu-
lated by using the steady-state values of the electron spin
polarization defined by Eq. �29�. Here, like in the previous
subsection, the dispersion of electron spin precession fre-
quency is described by the function ge�0� given by Eq. �70�.
Figures 9�d�–9�f� show the electron spin distributions at the
moment right after the pump pulse arrival. One can see that
the latter distributions are very different from those created
by a single pulse and shown in Figs. 8�c� and 8�d�.

In the case of excitation of a QD ensemble by an infinite
pump-pulse train, a steady-state distribution of electron spin
polarization is formed in accordance with Eq. �29�. The
modes satisfying the PSC: �=2�N /TR �N is a large integer,
N�100 for B=1 T� provide an enhanced contribution to the
electron spin polarization. The sum of these mode contribu-
tions to the spin polarization results in the constructive inter-
ference around the pulse arrival time due to the commensu-
rability of the spin precession frequencies with the cyclic
repetition frequency of the train, 2� /TR.

The shape of the steady-state distribution of electron spin
polarization depends strongly on the number of precession
modes, which satisfy PSC and, therefore, on pulse duration
and on a magnetic field. At the relatively weak field, B
=1 T, and pulse duration 	p=1.5 ps the distribution is

FIG. 8. �Color online� Time resolved dependence of the pump-
probe Faraday rotation and ellipticity signals initiated in the QD
ensemble by a single pump pulse for �a� the degenerate, P=pr,
and �b� the nondegenerate, P�pr, regimes. For clarity, the sig-
nals are vertically shifted from each other. Calculations are con-
ducted for the pump pulse with area �=� in the magnetic field B
=1 T by using the g factor spectral dependence described by Eq.
�70� and the parameters 	p=1.5 ps, �pr=1.4 eV and 	s,e=3 �s
taken from Ref. 11. Insets show the Faraday rotation and ellipticity
signals in a small range of delay times. The Faraday rotation curve
in the inset of panel �a� is multiplied by a factor of 2. Panels �c� and
�d� show Sz

+ and Im�G�pr−0�� as a function of pr−0 for the
degenerate and nondegenerate regimes, respectively.

FIG. 9. �Color online� Time resolved dependence of the single-
color pump-probe Faraday rotation and ellipticity signals initiated
in the QD ensemble by a train of pump pulses with the repetition
period TR=13.2 ns and pulse duration 	p=1.5 ps ��a� and �b�� and
	p=100 fs �c�, in the magnetic fields B=1 T �a� and �c�, and B
=5 T �b�. Calculations are conducted for pump pulses with the area
�=� using g factor spectral dependence described by Eq. �70� and
the parameters �pr=1.4 eV and 	s,e=3 �s taken from Ref. 11.
Panels �d�–�f� show the distributions Sz

+�pr−0� and Im�G�pr

−0�� created by the pico- and femtosecond pulse trains at B
=1 T and B=5 T, respectively.
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asymmetric because only few modes satisfy PSC �see Fig.
9�d��. In this case, the ellipticity and Faraday rotation signals
are similar to each other as it was in the case of detuned
pump and probe pulses, Fig. 8�b�.

There are more modes satisfying PSC with increase of a
magnetic field. This is because the dispersion of electron spin
precession frequency increases linearly with magnetic field,
but the distance between the PSC modes 2� /TR does not
change. The density of modes satisfying the PSC increases
and the steady-state distribution of electron spin precession
frequency at the moment of pulse arrival becomes more
dense and symmetric �see Fig. 9�e�, where the electron spin
polarization was calculated for B=5 T�. In this case the Far-
aday rotation signal and the ellipticity signal become phase
shifted relative to each other. More importantly, the Faraday
signal vanishes at zero delay between pump and probe pulses
�Fig. 9�b�� similar to that for the case of the single pulse
excitation with degenerate pump and probe pulses �c.f., Fig.
8�a��. The shortening of the pulse duration �	p=100 fs� also
leads to an increase of the number of modes satisfying PSC
as is clearly seen in Fig. 8�f�, because of the spectral width of
the laser pulse increases with shortening of the pulse dura-
tion. The increase in number of modes results in a faster
decay of ellipticity and FR rotation signals and in a vanish-
ing of the Faraday rotation signal at the moment of pulse
arrival. In two-color experiments �not shown� the ellipticity
and the Faraday rotation signal time-dependent traces be-
come similar and the phase shift vanishes.

D. Effect of the pump and probe spectral position
and the electron g factor dispersion

Now we turn to the effects of the spectral distribution of
the QD transition energies and of the distribution of electron
spin precession frequencies described by Eqs. �69� and �71�
on the time traces of the FR and ellipticity signals created by
the train of pulses with repetition period TR=13.2 ns. Panels
�a�–�c� in Fig. 10 show FR and ellipticity time-resolved de-
pendences for different spectral positions of pump and probe
pulses which are shown on the corresponding right-hand side
panels. The panels �a� and �b� show the traces for the same
pump and probe carrying frequencies �single color or degen-
erate pump-probe setup�. These frequencies are tuned to the
peak of the QD distribution in Fig. 10�a� and to its left wing
in Fig. 10�b�. The panel �c� shows the traces of the FR and
ellipticity signals for the case when the pump and probe
pulse frequencies are in the vicinity of the maximum of
 opt�0�, but slightly detuned with respect to each other. The
distribution of optical transition frequencies in the QD en-
semble,  opt�0�, shown in Fig. 10 by black curves, is de-
scribed by Eq. �69�.

The calculation shows that the inclusion of additional dis-
persion of electron spin precession frequencies described by
Eq. �71� leads to the faster decay of both the FR and ellip-
ticity signals due to a faster dephasing of electron spin pre-
cession in the QD ensemble. It is worth noting that the FR
signal amplitude vanishes for degenerate pump and probe
pulses tuned to the maximum of the QD distribution, that is
consistent with experimentally observed decrease of this sig-

FIG. 10. �Color online� Time resolved dependence of the pump-
probe Faraday rotation and ellipticity signals initiated in the QD
ensemble by a train of pump pulses for the degenerate, P=pr,
�panels �a� and �b�� and the nondegenerate, P�pr, �panel �c��
regimes. In the right-hand side panels, we show the density of the
optical transition energies and the frequency position of the pump
and probe pulses. Calculations are conducted for pump pulses of the
area �=�, a magnetic field B=1 T, 	p=1.5 ps, and 	s,e=3 �s.

FIG. 11. �Color online� Time resolved dependences of the de-
generated pump-probe Faraday rotation and ellipticity signals in an
inhomogeneous ensemble of QDs excited by trains of pulses with
duration 1.5 ps �panel �a�� and 100 fs �panel �b��, correspondingly.
Calculations are conducted for the same set of parameters as in
Figs. 9�a� and 9�c�. Note that the time scale used here is different
from the time scale used in Fig. 9.
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nal in Ref. 51. The nonzero FR signal at zero delay time seen
in Figs. 10�b� and 10�c� is related to the asymmetry in the
QD density distribution which is revealed in the case of the
pump pulse detuned from the ̄0 ��̄0=1.4 eV�. In the case
of two color experiments, traces of the pump-probe FR and
ellipticity signals are very similar as shown in Fig. 10�c�.

Figure 11 compares the Faraday rotation and ellipticity
signals for laser trains of different pulse duration: 1.5 ps �a�
and 100 fs �b�. Calculations that take into account spectral
distribution of optical transition energies in the QD ensemble
 opt�0� and total Larmor frequency dispersion were con-
ducted in the degenerate regime for resonant excitation of
QDs at the maximum of  opt�0� �P=pr=0�. Since the
case of ps-excitation differs from the one demonstrated in
Fig. 10�a� only by a larger dispersion of electron spin pre-
cession modes ��=9�108 rad/s �time-dependent traces in
Fig. 10�a� were calculated for ��=5�108 rad/s� there is a
faster decay of the signals. The spectral width of pulses in
the fs-pulse train is larger than the distribution  opt�0� used
in this calculation. This effectively decreases the number of
electron spin precession modes contributing to the FR and
ellipticity signals, thus explaining the dephasing decay,
which is slightly weaker than the decay shown in Fig. 9�c�.

Surprisingly, Fig. 11 shows that signals created by ps- and
fs-pulse trains are very similar and the signal decays are
almost the same. This could occur only if the numbers of
electron precession modes satisfying the PSC for both exci-
tations are comparable. In the case of ps-train excitation, the
dispersion of electron spin precession modes is controlled by
�g and �N, connected with the shape and composition
fluctuations of QDs and the nuclear field fluctuations, corre-
spondingly. Due to the small spectral width of the ps excita-
tion, only a small part of the electron spin precession mode
dispersion is determined by the frequency dependence of the
electron g-factor. This is not the case, however, for the fs-
pulse train excitation, where the dispersion of electron spin
precession modes have a significant contribution connected
with frequency dependence of an average g factor g�0� on
the spectral width of the fs-pulses.

Finally, Fig. 12 shows traces of the KR signal calculated
by using Eq. �58� for three different thicknesses of the cap
layer and the same parameters as in Fig. 10. One can see
that, for particular cap layer thicknesses, the KR signal looks
like either the FR or the ellipticity signals. Generally, how-
ever, the trace of the KR signal is a linear combination the
FR and ellipticity signals with their partial contributions de-
pending on the cap layer thickness.

Note that L=$ /2nb �top curves in Fig. 12� corresponds to
the real thickness L=115 nm of the cap layer of the QD
sample which was investigated in Ref. 11. For this cap layer,
the time dependent trace of the KR signal is similar to that of
the ellipticity signal.

V. SUMMARY

The formalism presented here provides a complete theo-
retical description of single- and two-color pump-probe Far-
aday or Kerr rotation and ellipticity experiments in an en-
semble of singly charged QDs. The analytical expressions
describing the electron spin polarization created by a circu-
larly polarized pump pulse or by a train of such pulses are
derived. The expressions for the magnitudes of the Faraday,
Kerr, and ellipticity signals are presented.

The developed theory shows that the pump-probe Faraday
rotation and ellipticity experiments measure the electron spin
precession in slightly different subsets of QDs of the en-
semble leading to the different oscillation frequencies and
shapes of the corresponding time-dependent traces. The
time-dependent traces of the pump-probe Kerr rotation signal
are linear superpositions of the Faraday rotation and elliptic-
ity signals whose relative weights depend on the cap layer
thickness.

The modeling of time-dependent traces of the Faraday
rotation signal shows their high sensitivity to the inhomoge-
neous properties of the QD ensemble, such as the transition-
frequency dependence of electron g factor and the nuclear-
induced dispersion, as well as to the excitation conditions,
such as pump and probe pulse detuning, single pulse versus
train of pulses excitation, and the pumping intensity. The
pump-probe Faraday and Kerr rotation and ellipticity experi-
ments can provide complementary information about inho-
mogeneous properties of QD ensembles.
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FIG. 12. �Color online� Time resolved depen-
dence of pump-probe Kerr rotation signals initi-
ated in the QD ensemble by a train of pump
pulses for the degenerate �panel �a�� and nonde-
generate �panel �b�� regimes. The traces are cal-
culated for three thicknesses of the cap layer 2L
=$ /nb ,0.8$ /nb, and 0.75$ /nb, where nb
��b.
Calculations are conducted for the same set of
parameters as in Figs. 10�a� and 10�c�.
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